G
Feb 7, 1877
BritishTrinity College, CambridgeScientistsMathematiciansAquarius Celebrities
@Trinity College, Cambridge, Facts and Family
G
G. H. Hardy born at
G. H. Hardy never married. In his final years, it was his sister Gertrude who used to take care of him. In addition, he had many friends, with whom he had cordial relationships.
He was highly passionate about cricket. Every morning, he used to study cricket scores with great interest. When it was not cricket season in England, he would study Australian cricket scores. Maynard Keynes once observed that had Hardy studied the stock exchange with similar interest, he would have become very rich.
Although he was a self-proclaimed atheist he considered God to be his number one enemy and to fool God, he would often take thick sweaters, umbrella, mathematical papers and students’ examination scripts to the cricket ground. His theory was that, God would think he expected rain, so would provide sunshine.
Godfrey Harold Hardy was born on 7 February 1877 in Cranleigh, a prosperous village in Surrey, England. His father, Isaac Hardy, was the bursar and art master at Cranleigh School and his mother, Sophia Hardy, was a teacher at Lincoln Teacher's Training School.
Both Isaac and Sophia came from poor families and therefore, in spite of being highly intelligent with considerable mathematical skills, they could not get university education. The couple had two children; Harold, their first born and Gertrude, two years his younger. The siblings were very close to each other.
Harold Hardy was a mathematical genius from his very birth. It is said that he could write numbers up to one million by the age of two. Brought up in a religious Victorian household, he had to attend church services regularly. But there he spent his time factorizing the numbers on the hymn board.
Hardy was equally fond of cricket. One day, while playing with a bat, he unintentionally hit Gertrude and damaged her eye to such an extent that she had to be fitted with a glass eye. Interestingly, the incident brought the siblings closer and they forever remained devoted to each other.
He began his education at Cranleigh School. He later wrote that as a boy he did not feel any passion for mathematics. He simply thought of the subject “in terms of examinations and scholarships” and also found that if he wanted to beat other boys, mathematics came very handy.
In 1906, G. H. Hardy began his career as a lecturer at Trinity College, Cambridge. Here he taught only six hours a week and spent the rest of his time on his research work, writing a number of papers on the convergence of series and integrals and allied topics.
Although Hardy dismissed most of his early works as of little importance, he is still remembered for his 1908 work, ‘A Course of Pure Mathematics’, which for the first time tries to provide a comprehensive description of number, function, limit, etc. Until then, British mathematicians largely followed applied mathematics.
The year 1911 was an important one in Hardy’s career, when he began to collaborate with John Edensor Littlewood, establishing a partnership that would last for the next 35 years. Together they began extensive work on mathematical analysis and analytic number theory, publishing the first series of papers in 1912.
In early 1913, Hardy received an unusual letter, dated 16 January 1913, from an unknown Indian named Srinivasa Iyengar Ramanujan, a clerk under the Madras Port Trust. It consisted of nine pages of mathematics.
At a first glance Hardy took it as a fraud, but on further reading he found it amazing and asked Littlewood to take a look at them. Subsequently in 1914, he arranged to have Ramanujan brought to Cambridge.
In mathematics, G. H. Hardy is best remembered for his work on ‘Hardy–Ramanujan asymptotic formula’ and ‘Hardy–Littlewood circle method,’ while in biology, he is famous for his work on ‘Hardy–Weinberg principle’, which deals with population genetics.
He is equally known for his 1940 book, ‘A Mathematical Apology’. In it, he had used the term "apology" to mean formal justification. Although it deals mainly with the aesthetics of mathematics, he had also added some personal content to it, giving us an insight into the mind of a working mathematician.